23 research outputs found

    A Neural Algorithm of Artistic Style

    Full text link
    In fine art, especially painting, humans have mastered the skill to create unique visual experiences through composing a complex interplay between the content and style of an image. Thus far the algorithmic basis of this process is unknown and there exists no artificial system with similar capabilities. However, in other key areas of visual perception such as object and face recognition near-human performance was recently demonstrated by a class of biologically inspired vision models called Deep Neural Networks. Here we introduce an artificial system based on a Deep Neural Network that creates artistic images of high perceptual quality. The system uses neural representations to separate and recombine content and style of arbitrary images, providing a neural algorithm for the creation of artistic images. Moreover, in light of the striking similarities between performance-optimised artificial neural networks and biological vision, our work offers a path forward to an algorithmic understanding of how humans create and perceive artistic imagery

    Controlling Perceptual Factors in Neural Style Transfer

    Full text link
    Neural Style Transfer has shown very exciting results enabling new forms of image manipulation. Here we extend the existing method to introduce control over spatial location, colour information and across spatial scale. We demonstrate how this enhances the method by allowing high-resolution controlled stylisation and helps to alleviate common failure cases such as applying ground textures to sky regions. Furthermore, by decomposing style into these perceptual factors we enable the combination of style information from multiple sources to generate new, perceptually appealing styles from existing ones. We also describe how these methods can be used to more efficiently produce large size, high-quality stylisation. Finally we show how the introduced control measures can be applied in recent methods for Fast Neural Style Transfer.Comment: Accepted at CVPR201

    Texture Modelling Using Convolutional Neural Networks

    Get PDF
    We introduce a new model of natural textures based on the feature spaces of convolutional neural networks optimised for object recognition. Samples from the model are of high perceptual quality demonstrating the generative power of neural networks trained in a purely discriminative fashion. Within the model, textures are represented by the correlations between feature maps in several layers of the network. We show that across layers the texture representations increasingly capture the statistical properties of natural images while making object information more and more explicit. Extending this framework to texture transfer, we introduce A Neural Algorithm of Artistic Style that can separate and recombine the image content and style of natural images. The algorithm allows us to produce new artistic imagery that combines the content of an arbitrary photograph with the appearance of numerous well-known artworks, thus offering a path towards an algorithmic understanding of how humans create and perceive artistic imagery

    Predicting Fixations From Deep and Low-Level Features

    Get PDF
    Learning what properties of an image are associated with human gaze placement is important both for understanding how biological systems explore the environment and for computer vision applications. Recent advances in deep learning for the first time enable us to explain a significant portion of the information expressed in the spatial fixation structure. Our saliency model DeepGaze II uses the VGG network (trained on object recognition in the ImageNet challenge) to convert an image into a high-dimensional feature space which is then readout by a second very simple network to yield a density prediction. DeepGaze II is right now the best performing model for predicting fixations when freeviewing still images (MIT Saliency Benchmark, AUC and sAUC). By retraining on other datasets, we can explore how the features driving fixations change over different tasks or over presentation time. Additionally, the modular architecture of DeepGaze II allows us to quantify how predictive certain features are for fixations. We demonstrate this by replacing the VGG network with very simple isotropic mean-luminance-contrast features and end up with a network that outperforms all previous saliency models before the models that used pretrained deep networks (including models with high-level features like Judd or eDN). Using DeepGaze and the Mean-Luminance-Contrast model (MLC), we can separate how much low-level and high-level features contribute to fixation selection in different situations

    Style Separation and Synthesis via Generative Adversarial Networks

    Full text link
    Style synthesis attracts great interests recently, while few works focus on its dual problem "style separation". In this paper, we propose the Style Separation and Synthesis Generative Adversarial Network (S3-GAN) to simultaneously implement style separation and style synthesis on object photographs of specific categories. Based on the assumption that the object photographs lie on a manifold, and the contents and styles are independent, we employ S3-GAN to build mappings between the manifold and a latent vector space for separating and synthesizing the contents and styles. The S3-GAN consists of an encoder network, a generator network, and an adversarial network. The encoder network performs style separation by mapping an object photograph to a latent vector. Two halves of the latent vector represent the content and style, respectively. The generator network performs style synthesis by taking a concatenated vector as input. The concatenated vector contains the style half vector of the style target image and the content half vector of the content target image. Once obtaining the images from the generator network, an adversarial network is imposed to generate more photo-realistic images. Experiments on CelebA and UT Zappos 50K datasets demonstrate that the S3-GAN has the capacity of style separation and synthesis simultaneously, and could capture various styles in a single model
    corecore